Chapter 8 Gradient Methods

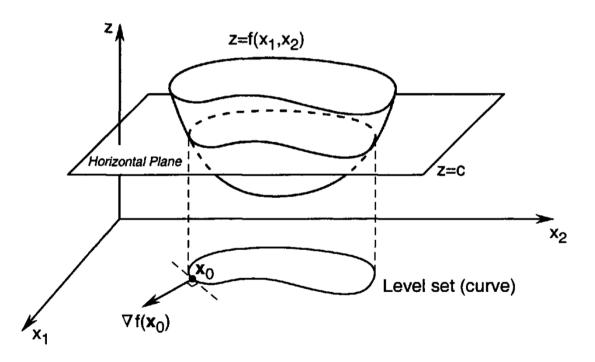
An Introduction to Optimization

Spring, 2014

Wei-Ta Chu

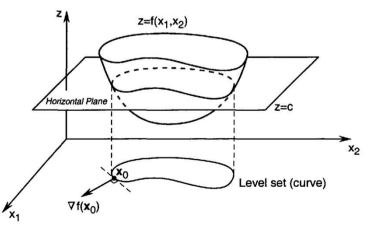
Introduction

- Recall that a *level set* of a function f : Rⁿ → R is the set of points x satisfying f(x) = c for some constant c. Thus, a point x₀ ∈ Rⁿ is on the level set corresponding to level c if f(x₀) = c
- In the case of functions of two real variables, $f : R^2 \to R$



Introduction

- The gradient of f at x₀, denoted by ¬f(x₀), is orthogonal to the tangent vector to an arbitrary smooth curve passing through x₀ on the level set f(x) = c
- The direction of maximum rate of increase of a real-valued differentiable function at a point is orthogonal to the level set of the function through that point.
- The gradient acts in such a direction that for a given small displacement, the function *f* increases more in the direction of the gradient than in any other direction.



$\langle \nabla f(\boldsymbol{x}), \boldsymbol{d} \rangle \leq \| \nabla f(\boldsymbol{x}) \| \| \nabla \boldsymbol{d} \|$

Cauchy-Schwarz inequality

Introduction

- Recall that ⟨∇f(x), d⟩, ||d|| = 1, is the rate of increase of f in the direction d at the point x. By the Cauchy-Schwarz inequality, ⟨∇f(x), d⟩ ≤ ||∇f(x)||
 because ||d|| = 1. But if d = ∇f(x)/||∇f(x)||, then ⟨∇f(x), ∇f(x)/||∇f(x)|| ⟩ = ||∇f(x)||
- Thus, the direction in which
 ¬f(x) points is the direction of maximum rate of increase of f at x.
- The direction in which ¬ f(x) points is the direction of maximum rate of decrease of f at x.
- Hence, the direction of negative gradient is a good direction to search if we want to find a function minimizer.

Introduction

Let x⁽⁰⁾ be a starting point, and consider the point x⁽⁰⁾ − α ∨ f(x⁽⁰⁾) Then, by Taylor's theorem, we obtain

 $f(\boldsymbol{x}^{(0)} - \alpha \bigtriangledown f(\boldsymbol{x}^{(0)})) = f(\boldsymbol{x}^{(0)}) - \alpha \| \bigtriangledown f(\boldsymbol{x}^{(0)}) \|^2 + o(\alpha)$

- If $\nabla f(\boldsymbol{x}^{(0)}) \neq \boldsymbol{0}$, then for sufficiently small $\alpha > 0$, we have $f(\boldsymbol{x}^{(0)} \alpha \bigtriangledown f(\boldsymbol{x}^{(0)})) < f(\boldsymbol{x}^{(0)})$
- This means that the point x⁽⁰⁾ − α ∨ f(x⁽⁰⁾) is an improvement over the point x⁽⁰⁾ if we are searching for a minimizer.

Introduction

Given a point x^(k), to find the next point x^(k+1), we move by an amount −α_k ⊽ f(x^(k)), where α_k is a positive scalar called the *step size*.

$$\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha_k \bigtriangledown f(\boldsymbol{x}^{(k)})$$

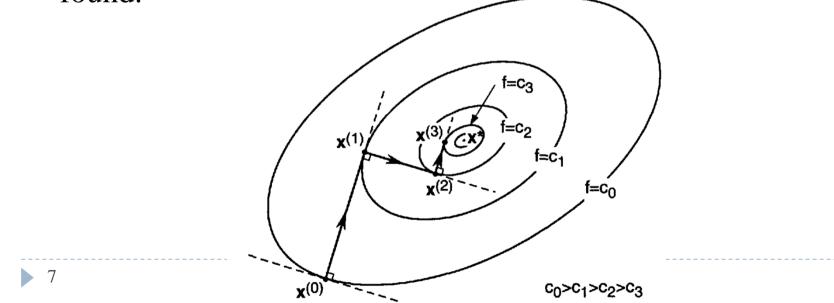
- We refer to this as a *gradient descent algorithm* (or *gradient algorithm*). The gradient varies as the search proceeds, tending to zero as we approach the minimizer.
- We can take very small steps and reevaluate the gradient at every step, or take large steps each time. The former results in a laborious method of reaching the minimizer, whereas the latter may result in a more zigzag path the minimizer.

The Method of Steepest Descent

Steepest descent is a gradient algorithm where the step size α_k is chosen to achieve the maximum amount of decrease of the objective function at each individual step.

$$\alpha_k = \arg \min_{\alpha \ge 0} f(\boldsymbol{x}^{(k)} - \alpha \bigtriangledown f(\boldsymbol{x}^{(k)}))$$

At each step, starting from the point x^(k), we conduct a line search in the direction - ⊽ f(x^(k)) until a minimizer, x^(k+1), is found.



Proposition 8.1

- Proposition 8.1: If {x^(k)}_{k=0}[∞] is a steepest descent sequence for a given function f : Rⁿ → R, then for each k the vector x^(k+1) x^(k) is orthogonal to the vector x^(k+2) x^(k+1)
- Proof: From the iterative formula of the method of steepest descent it follows that

 $\langle \boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}, \boldsymbol{x}^{(k+2)} - \boldsymbol{x}^{(k+1)} \rangle = \alpha_k \alpha_{k+1} \langle \nabla f(\boldsymbol{x}^{(k)}), \nabla f(\boldsymbol{x}^{(k+1)}) \rangle$ To complete the proof it is enough to show

 $\langle \nabla f(\boldsymbol{x}^{(k)}), \nabla f(\boldsymbol{x}^{(k+1)}) \rangle = 0$

Observe that α_k is a nonnegative scalar that minimizes $\phi_k(\alpha) \triangleq f(\mathbf{x}^{(k)} - \alpha \bigtriangledown f(\mathbf{x}^{(k)}))$. Hence, using the FONC and the chain rule gives us

$$0 = \phi'_k(\alpha_k) = \frac{d\phi_k}{d\alpha}(\alpha_k)$$

= $\nabla f(\boldsymbol{x}^{(k)} - \alpha_k \nabla f(\boldsymbol{x}^{(k)}))^T (-\nabla f(\boldsymbol{x}^{(k)})) = -\langle \nabla f(\boldsymbol{x}^{(k+1)}), f(\boldsymbol{x}^{(k)}) \rangle$

Proposition 8.2

- Proposition 8.2: If {x^(k)}_{k=0}[∞] is a steepest descent sequence for a given function f : Rⁿ → R and if ∇f(x^(k)) ≠ 0, then f(x^(k+1)) < f(x^(k))
- Proof: Recall that

 $\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^{(k)} - \alpha_k \bigtriangledown f(\boldsymbol{x}^{(k)})$

where $\alpha_k \ge 0$ is the minimizer of

 $\phi_k(\alpha) = f(\boldsymbol{x}^{(k)} - \alpha \bigtriangledown f(\boldsymbol{x}^{(k)}))$

over all $\alpha \ge 0$. Thus, for $\alpha \ge 0$, we have $\phi_k(\alpha_k) \le \phi_k(\alpha)$

• By the chain rule,

 $\phi'_{k}(0) = \frac{d\phi_{k}}{d\alpha}(0) = -(\nabla f(\boldsymbol{x}^{(k)} - 0 \nabla f(\boldsymbol{x}^{(k)})))^{T}(\nabla f(\boldsymbol{x}^{(k)})) = -\|\nabla f(\boldsymbol{x}^{(k)})\|^{2} < 0$ because $\nabla f(\boldsymbol{x}^{(k)}) \neq 0$ by assumption. Thus, $\phi'_{k}(0) < 0$ and this implies that there is an $\bar{\alpha} > 0$ such that $\phi_{k}(0) > \phi_{k}(\alpha)$ for all $\alpha \in (0, \bar{\alpha}]$ Hence,

 $f(\boldsymbol{x}^{(k+1)}) = \phi_k(\alpha_k) \le \phi_k(\bar{\alpha}) < \phi_k(0) = f(\boldsymbol{x}^{(k)})$

Descent Property

- Descent property: $f(\boldsymbol{x}^{(k+1)}) < f(\boldsymbol{x}^{(k)})$ if $\nabla f(\boldsymbol{x}^{(k)}) \neq \mathbf{0}$
- If for some k, we have
 ¬f(x^(k)) = 0, then the point x^(k) satisfies the FONC. In this case, x^(k+1) = x^(k). We can use the above as the basis for a stopping criterion for the algorithm.
- The condition ⊽f(x^(k)) = 0, however, is not directly suitable as a practical stopping criterion, because the numerical computation of the gradient will rarely be identically equal to zero.
- A practical criterion is to check if the norm ||⊽f(x^(k))|| is less than a prespecified threshold.
- ► Alternatively, we may compute |f(x^(k+1)) f(x^(k))|, and if the difference is less than some threshold, then we stop.

Descent Property

- ► Another alternative is to compute the norm ||x^(k+1) x^(k)||, and we stop if the norm is less than a prespecified threshold.
- We may check "relative" values of the quantities above $\frac{|f(\boldsymbol{x}^{(k+1)}) - f(\boldsymbol{x}^{(k)})|}{|f(\boldsymbol{x}^{(k)})|} < \epsilon \qquad \frac{\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}\|}{\|\boldsymbol{x}^{(k)}\|} < \epsilon$

The two relative stopping criteria are preferable because they are "scale-independent." Scaling the objective function does not change the satisfaction of the criterion.

 $\textbf{To avoid dividing by very small numbers, modify as} \\ \frac{|f(\boldsymbol{x}^{(k+1)}) - f(\boldsymbol{x}^{(k)})|}{\max\{1, |f(\boldsymbol{x}^{(k)})|\}} < \epsilon \qquad \frac{\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{(k)}\|}{\max\{1, \|\boldsymbol{x}^{(k)}\|\}} < \epsilon$

- Use the steepest descent method to find the minimizer of $f(x_1, x_2, x_3) = (x_1 - 4)^4 + (x_2 - 3)^2 + 4(x_3 + 5)^4$ The initial point is $\boldsymbol{x}^{(0)} = [4, 2, -1]^T$
- We find that

$$\nabla f(\boldsymbol{x}) = [4(x_1 - 4)^3, 2(x_2 - 3), 16(x_3 + 5)^3]^T$$

Hence, $\nabla f(\boldsymbol{x}^{(0)}) = [0, -2, 1024]^T$

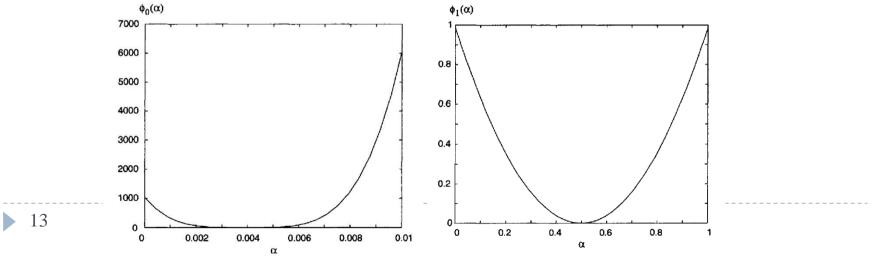
• To compute
$$\boldsymbol{x}^{(1)}$$
, we need
 $\alpha_0 = \arg \min_{\alpha \ge 0} f(\boldsymbol{x}^{(0)} - \alpha \bigtriangledown f(\boldsymbol{x}^{(0)}))$
 $= \arg \min_{\alpha \ge 0} (0 + (2 + 2\alpha - 3)^2 + 4(-1 - 1024\alpha + 5)^4)$
 $= \arg \min_{\alpha \ge 0} \phi_0(\alpha)$
Using the secant method from Section 7.4, we obtain
 $\alpha_0 = 3.967 \times 10^{-3}$

- Plot $\phi_0(\alpha)$ versus α
- We compute

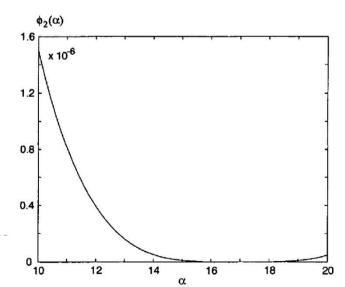
$$\boldsymbol{x}^{(1)} = \boldsymbol{x}^{(0)} - \alpha_0 \bigtriangledown f(\boldsymbol{x}^{(0)}) = [4.000, 2.008, -5.062]^T$$

• To find $\boldsymbol{x}^{(2)}$, we first determine $\nabla f(\boldsymbol{x}^{(1)}) = [0.000, -1.994, -0.003875]^T$ Next, we find α_1 $\alpha_1 = \arg \min_{\alpha \ge 0} (0 + (2.008 + 1.984\alpha - 3)^2 + 4(-5.062 + 0.003875\alpha + 5)^4)$ $= \arg \min_{\alpha \ge 0} \phi_1(\alpha)$

Using the secant method again, we obtain $\alpha_1 = 0.5000$



- Thus, $\boldsymbol{x}^{(2)} = \boldsymbol{x}^{(1)} \alpha_1 \bigtriangledown f(\boldsymbol{x}^{(1)}) = [4.000, 3.000, -5.060]^T$
- To find $\boldsymbol{x}^{(3)}$, we first determine $\nabla f(\boldsymbol{x}^{(2)}) = [0.000, 0.000, -0.003525]^T$ $\alpha_2 = \arg \min_{\alpha \ge 0} (0.000 + 0.000 + 4(-5.060 + 0.003525\alpha + 5)^4)$ $= \arg \min_{\alpha \ge 0} \phi_2(\alpha)$ $\alpha_1 = 16.29$
- The value $\boldsymbol{x}^{(3)} = [4.000, 3.000, -5.002]^T$
- Note that the minimizer of *f* is [4, 3, −5]^T and hence it appears that we have arrived at the minimizer in only three iterations.



Steepest Descent for Quadratic Function

• A quadratic function of the form

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x}$$

where $Q \in R^{m \times n}$ is a symmetric positive define matrix, $b \in R^n$ and $x \in R^n$. The unique minimizer of f can be found by setting the gradient of f to zero, where

 $\nabla f(\boldsymbol{x}) = \boldsymbol{Q}\boldsymbol{x} - \boldsymbol{b}$ because $D(\boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x}) = \boldsymbol{x}^T (\boldsymbol{Q} + \boldsymbol{Q}^T) = 2\boldsymbol{x}^T \boldsymbol{Q}$ and $D(\boldsymbol{b}^T \boldsymbol{x}) = \boldsymbol{b}^T$

Steepest Descent for Quadratic Function

The Hessian of f is F(x) = Q = Q^T > 0. To simplify the notation we write g^(k) = ∇f(x^(k)). Then, for the steepest descent algorithm for the quadratic function can be represented as $x^{(k+1)} = x^{(k)} - α_k g^{(k)}$

where

$$\alpha_k = \arg \min_{\alpha \ge 0} f(\boldsymbol{x}^{(k)} - \alpha \boldsymbol{g}^{(k)})$$

= $\arg \min_{\alpha \ge 0} \left(\frac{1}{2} (\boldsymbol{x}^{(k)} - \alpha \boldsymbol{g}^{(k)})^T \boldsymbol{Q} (\boldsymbol{x}^{(k)} - \alpha \boldsymbol{g}^{(k)}) - (\boldsymbol{x}^{(k)} - \alpha \boldsymbol{g}^{(k)})^T \boldsymbol{b} \right)$

 In the quadratic case, we can find an explicit formula for α_k. Assume that g^(k) ≠ 0, for if g^(k) = 0, then x^(k) = x* and the algorithm stops.

$$egin{aligned} oldsymbol{g}^{(k)} &=
abla f(oldsymbol{x}^{(k)}) &
abla f(oldsymbol{x}) = oldsymbol{Q}oldsymbol{x} - oldsymbol{b} \end{bmatrix}$$

Steepest Descent for Quadratic Function

• Because $\alpha_k \ge 0$ is the minimizer of $\phi_k(\alpha) = f(\boldsymbol{x}^{(k)} - \alpha \boldsymbol{g}^{(k)})$, we apply the FONC to $\phi_k(\alpha)$ to obtain

$$\phi'_k(\alpha) = (\boldsymbol{x}^{(k)} - \alpha \boldsymbol{g}^{(k)})^T \boldsymbol{Q}(-\boldsymbol{g}^{(k)}) - \boldsymbol{b}^T(-\boldsymbol{g}^{(k)})$$

• Therefore, $\phi'_k(\alpha) = 0$ if $\alpha g^{(k)T} Q g^{(k)} = (x^{(k)T} Q - b^T) g^{(k)}$ But, $x^{(k)T} Q - b^T = g^{(k)T}$

Hence,

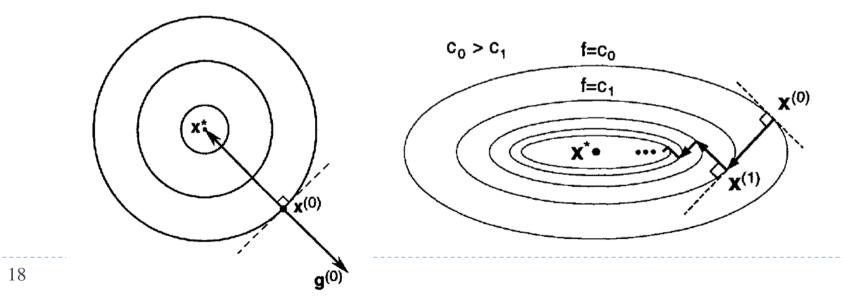
$$\alpha_k = \frac{\boldsymbol{g}^{(k)T}\boldsymbol{g}^{(k)}}{\boldsymbol{g}^{(k)T}\boldsymbol{Q}\boldsymbol{g}^{(k)}}$$

• In summary, the method of steepest descent for the quadratic stakes the form

$$m{x}^{(k+1)} = m{x}^{(k)} - rac{m{g}^{(k)T}m{g}^{(k)}}{m{g}^{(k)T}m{Q}m{g}^{(k)}}m{g}^{(k)} \qquad m{g}^{(k)} =
abla f(m{x}^{(k)}) = m{Q}m{x}^{(k)} - m{b}$$

17

- Let f(x₁, x₂) = x₁² + x₂². Then, starting from an arbitrary initial point x⁽⁰⁾ ∈ R², we arrive at the solution x^{*} = 0 ∈ R² at only one step.
- However, if $f(x_1, x_2) = \frac{x_1^2}{5} + x_2^2$, then the method of steepest descent shuffles ineffectively back and forth when searching for the minimizer in a narrow valley. This example illustrates a major drawback in the steepest descent method.



- In a *descent method*, as each new point is generated by the algorithm, the corresponding value of the objective function decreases in value.
- An iterative algorithm is *globally convergent* if for any arbitrary starting point the algorithm is guaranteed to generate a sequence of pints converging to a point that satisfies the FONC for a minimizer.
- If not, it may still generate a sequence that converges to a point satisfying the FONC, provided that the initial point is sufficiently close to the point.
 - Locally convergent
- How fast the algorithm converges to a solution point: *rate of convergence*

$\begin{bmatrix} \nabla f(\boldsymbol{x}^*) = \boldsymbol{Q}\boldsymbol{x}^* - \boldsymbol{b} = \boldsymbol{0} \end{bmatrix}$

 The convergence analysis is more convenient if instead of working with *f* we deal with

$$V(x) = f(x) + \frac{1}{2}x^{*T}Qx^{*} = \frac{1}{2}(x - x^{*})^{T}Q(x - x^{*})$$

where $Q = Q^T > 0$. The solution point x^* is obtained by solving Qx = b; that is, $x^* = Q^{-1}b$

• The function V differs from f only by a constant $\frac{1}{2} x^{*T} Q x^{*}$

$$\begin{bmatrix} \boldsymbol{g}^{(k)} = \nabla f(\boldsymbol{x}^{(k)}) & \nabla f(\boldsymbol{x}) = \boldsymbol{Q}\boldsymbol{x} - \boldsymbol{b} \end{bmatrix}$$

Convergence $V(\boldsymbol{x}) = f(\boldsymbol{x}) + \frac{1}{2}\boldsymbol{x}^{*T}\boldsymbol{Q}\boldsymbol{x}^* = \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}^*)^T\boldsymbol{Q}(\boldsymbol{x} - \boldsymbol{x}^*)$

• Lemma 8.1: The iterative algorithm $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha_k \mathbf{g}^{(k)}$ with $\mathbf{g}^{(k)} = \mathbf{Q}\mathbf{x}^{(k)} - \mathbf{b}$ satisfies $V(\mathbf{x}^{(k+1)}) = (1 - \gamma_k)V(\mathbf{x}^{(k)})$ where if $\mathbf{g}^{(k)} = \mathbf{0}$, then $\gamma_k = 1$, and if $\mathbf{g}^{(k)} \neq \mathbf{0}$, then $\gamma_k = \alpha_k \frac{\mathbf{g}^{(k)T} \mathbf{Q} \mathbf{g}^{(k)}}{\mathbf{g}^{(k)T} \mathbf{Q}^{-1} \mathbf{g}^{(k)}} \left(2 \frac{\mathbf{g}^{(k)T} \mathbf{g}^{(k)}}{\mathbf{g}^{(k)T} \mathbf{Q} \mathbf{g}^{(k)}} - \alpha_k\right)$

Theorem 8.1: Let {x^(k)} be the sequence resulting from a gradient algorithm x^(k+1) = x^(k) - α_kg^(k). Let γ_k be as defined in Lemma 8.1, and suppose that γ_k > 0 for all k. Then, {x^(k)} converges to x^{*} for any initial condition x⁽⁰⁾ if and only if

$$\sum_{k=0}^{\infty} \gamma_k = \infty$$

- Proof:
- From Lemma 8.1 we have $V(\boldsymbol{x}^{(k+1)}) = (1 \gamma_k)V(\boldsymbol{x}^{(k)})$, from which we obtain

$$V(\boldsymbol{x}^{(k)}) = \left(\prod_{i=0}^{k-1} (1-\gamma_i)\right) V(\boldsymbol{x}^{(0)})$$

Assume that $\gamma_k < 1$ for all k, for otherwise the result holds trivially.

Convergence
$$V(\boldsymbol{x}^{(k)}) = \left(\prod_{i=0}^{k-1}(1-\gamma_i)\right)V(\boldsymbol{x}^{(0)})$$
$$V(\boldsymbol{x}) = f(\boldsymbol{x}) + \frac{1}{2}\boldsymbol{x}^{*T}\boldsymbol{Q}\boldsymbol{x}^* = \frac{1}{2}(\boldsymbol{x}-\boldsymbol{x}^*)^T\boldsymbol{Q}(\boldsymbol{x}-\boldsymbol{x}^*)$$

- Note that x^(k) → x* if and only if V(x^(k)) → 0. We see that this occurs if and only if Π[∞]_{i=0}(1 − γ_i) = 0, which, in turn, holds if and only if Π[∞]_{i=0} − log(1 − γ_i) = ∞
- Note that by Lemma 8.1, 1 − γ_i ≥ 0 and log(1 − γ_i) is well defined [log(0) is taken to be −∞]. Therefore, it remains to show that ∏[∞]_{i=0} − log(1 − γ_i) = ∞ if and only if ∑[∞]_{i=0} γ_i = ∞
- We first show that $\sum_{i=0}^{\infty} \gamma_i = \infty$ implies that $\sum_{i=0}^{\infty} -\log(1-\gamma_i) = \infty$. For this, first observe that for any $x \in R, x > 0$, we have $\log(x) \le x - 1$. Therefore, $\log(1 - \gamma_i) \le 1 - \gamma_i - 1 = -\gamma_i$, and hence $-\log(1 - \gamma_i) \ge \gamma_i$. Thus, if $\sum_{i=0}^{\infty} \gamma_i = \infty$, then clearly $\sum_{i=0}^{\infty} -\log(1 - \gamma_i) = \infty$

- Finally, we show that $\sum_{i=0}^{\infty} -\log(1-\gamma_i) = \infty$ implies that $\sum_{i=0}^{\infty} \gamma_i = \infty$
- By contraposition. Suppose that ∑_{i=0}[∞] γ_i < ∞. Then, it must be that γ_i → 0. Observe that for x ∈ R, x ≤ 1 and x sufficiently close to 1, we have log(x) ≥ 2(x − 1). Therefore, for sufficiently large i, log(1 − γ_i) ≥ 2(1 − γ_i − 1) = −2γ_i, which implies that −log(1 − γ_i) ≤ 2γ_i. Hence, ∑_{i=0}[∞] γ_i < ∞ implies that ∑_{i=0}[∞] −log(1 − γ_i) < ∞. This completes the proof.</p>
- The assumption in Theorem 8.1 that \(\gamma_k > 0\) for all \(k\) is significant. Furthermore, the result of the theorem does not hold in general if we do not have this assumption.

$$\left[V(\boldsymbol{x}^{(k+1)}) = (1 - \gamma_k) V(\boldsymbol{x}^{(k)}) \right]$$

- A counter example to show $\gamma_k > 0$ in Theorem 8.1 is necessary.
- For each k = 0, 1, 2, ..., choose α_k in such a way that γ_{2k} = -1/2 and γ_{2k+1} = 1/2 (we can always do this if, for example, Q = I_n). From Lemma 8.1 we have

 $V(\boldsymbol{x}^{2(k+1)}) = (1 - 1/2)(1 + 1/2)V(\boldsymbol{x}^{(2k)}) = (3/4)V(\boldsymbol{x}^{(2k)})$ Therefore, $V(\boldsymbol{x}^{(2k)}) \rightarrow 0$. Because $V(\boldsymbol{x}^{(2k+1)}) = (3/2)V(\boldsymbol{x}^{(2k)})$, we also have that $V(\boldsymbol{x}^{(2k+1)}) \rightarrow 0$. Hence, $V(\boldsymbol{x}^{(k)}) \rightarrow 0$, which implies that $\boldsymbol{x}^{(k)} \rightarrow 0$ (for all $\boldsymbol{x}^{(0)}$). On the other hand, it is clear that

$$\sum_{i=0}^k \gamma_i \le \frac{1}{2}$$

for all k. Hence, the result of the theorem does not hold if $\gamma_k \leq 0$ for some k.

• Rayleigh's inequality. For any $Q = Q^T > 0$, we have $\lambda_{min}(\boldsymbol{Q}) \|\boldsymbol{x}\|^2 \leq \boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x} \leq \lambda_{max}(\boldsymbol{Q}) \|\boldsymbol{x}\|^2$ We also have

$$\begin{split} \lambda_{min}(\boldsymbol{Q}^{-1}) &= \frac{1}{\lambda_{max}(\boldsymbol{Q})} \\ \lambda_{max}(\boldsymbol{Q}^{-1}) &= \frac{1}{\lambda_{min}(\boldsymbol{Q})} \\ \lambda_{min}(\boldsymbol{Q}^{-1}) \|\boldsymbol{x}\|^2 \leq \boldsymbol{x}^T \boldsymbol{Q}^{-1} \boldsymbol{x} \leq \lambda_{max}(\boldsymbol{Q}^{-1}) \|\boldsymbol{x}\|^2 \end{split}$$

Lemma 8.2: Let Q = Q^T > 0 be an n × n real symmetric positive definite matrix. Then, for any x ∈ Rⁿ, we have

$$\frac{\lambda_{min}(\boldsymbol{Q})}{\lambda_{max}(\boldsymbol{Q})} \leq \frac{(\boldsymbol{x}^T \boldsymbol{x})^2}{(\boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x})(\boldsymbol{x}^T \boldsymbol{Q}^{-1} \boldsymbol{x})} \leq \frac{\lambda_{max}(\boldsymbol{Q})}{\lambda_{min}(\boldsymbol{Q})}$$

 Proof: Appling Rayleigh's inequality and using the properties of symmetric positive definite matrices listed previously, we get

$$\begin{aligned} \frac{(\boldsymbol{x}^T \boldsymbol{x})^2}{(\boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x})(\boldsymbol{x}^T \boldsymbol{Q}^{-1} \boldsymbol{x})} &\leq \frac{\|\boldsymbol{x}\|^4}{\lambda_{min}(\boldsymbol{Q})\|\boldsymbol{x}\|^2 \lambda_{min}(\boldsymbol{Q}^{-1})\|\boldsymbol{x}\|^2} = \frac{\lambda_{max}(\boldsymbol{Q})}{\lambda_{min}(\boldsymbol{Q})} \\ \frac{(\boldsymbol{x}^T \boldsymbol{x})^2}{(\boldsymbol{x}^T \boldsymbol{Q} \boldsymbol{x})(\boldsymbol{x}^T \boldsymbol{Q}^{-1} \boldsymbol{x})} &\geq \frac{\|\boldsymbol{x}\|^4}{\lambda_{max}(\boldsymbol{Q})\|\boldsymbol{x}\|^2 \lambda_{max}(\boldsymbol{Q}^{-1})\|\boldsymbol{x}\|^2} = \frac{\lambda_{min}(\boldsymbol{Q})}{\lambda_{max}(\boldsymbol{Q})} \end{aligned}$$

$igg| oldsymbol{g}^{(k)} = iggraphi f(oldsymbol{x}^{(k)}) = oldsymbol{Q}oldsymbol{x}^{(k)} - oldsymbol{b} iggraphi$

Convergence

- ► Theorem 8.2: In the steepest descent algorithm, we have
 x^(k) → x^{*} for any x⁽⁰⁾
- Proof: If g^(k) = 0 for some k, then x^(k) = x* and the result holds.
 So assume that g^(k) ≠ 0 for all k. Recall that for the steepest descent algorithm,

$$\alpha_k = \frac{\boldsymbol{g}^{(k)T}\boldsymbol{g}^{(k)}}{\boldsymbol{g}^{(k)T}\boldsymbol{Q}\boldsymbol{g}^{(k)}}$$

Substituting this expression for α_k in the formula for γ_k yields $\gamma_k = \frac{(\boldsymbol{g}^{(k)T}\boldsymbol{g}^{(k)})^2}{(\boldsymbol{g}^{(k)T}\boldsymbol{Q}\boldsymbol{g}^{(k)})(\boldsymbol{g}^{(k)T}\boldsymbol{Q}^{-1}\boldsymbol{g}^{(k)})}$

Note that in this case $\gamma_k > 0$ for all k. Furthermore, by Lemma 8.2, we have $\gamma_k \ge (\lambda_{min}(\boldsymbol{Q})/\lambda_{max}(\boldsymbol{Q})) > 0$. Therefore, we have $\sum_{k=0}^{\infty} \gamma_k = \infty$, and hence by Theorem 8.1, we conclude that $\boldsymbol{x}^{(k)} \to \boldsymbol{x}^*$

- Consider now a gradient method with fixed step size; that is,
 α_k = α ∈ R for all k. The resulting algorithm is of the form
 x^(k+1) = x^(k) − αg^(k)
- We refer to the algorithm above as a *fixed-step-size* gradient algorithm. The algorithm is of practical interest because of its simplicity.
- The algorithm does not require a line search at each step to determine α_k. Clearly, the convergence of the algorithm depends on the choice of .

► Theorem 8.3: For the fixed-step-size gradient algorithm,
x^(k) → x^{*} for any x⁽⁰⁾ if and only if

$$0 < \alpha < \frac{2}{\lambda_{max}(\boldsymbol{Q})}$$

▶ Proof: ⇐: By Rayleigh's inequality we have $\lambda_{min}(\boldsymbol{Q})\boldsymbol{g}^{(k)T}\boldsymbol{g}^{(k)} \leq \boldsymbol{g}^{(k)T}\boldsymbol{Q}\boldsymbol{g}^{(k)} \leq \lambda_{max}(\boldsymbol{Q})\boldsymbol{g}^{(k)T}\boldsymbol{g}^{(k)}$ and

$$\boldsymbol{g}^{(k)T} \boldsymbol{Q}^{-1} \boldsymbol{g}^{(k)} \leq rac{1}{\lambda_{max}(\boldsymbol{Q})} \boldsymbol{g}^{(k)T} \boldsymbol{g}^{(k)}$$

• Therefore, substituting the above in the formula for γ_k , we have $\gamma_k \ge \alpha (\lambda_{min}(\boldsymbol{Q}))^2 \left(\frac{2}{\lambda_{max}(\boldsymbol{Q})} - \alpha\right) > 0$

Therefore, $\gamma_k > 0$ for all k, and $\sum_{k=0}^{\infty} \gamma_k = \infty$. Hence, by Theorem 8.1, we conclude that $\boldsymbol{x}^{(k)} \to \boldsymbol{x}^*$

Proof: ⇒: We use contraposition. Suppose that either α ≤ 0 or α ≥ 2/λ_{max}(Q). Let x⁽⁰⁾ be chosen such that x⁰ - x* is an eigenvector of Q corresponding to the eigenvalue λ_{max}(Q). Because

$$\begin{aligned} \boldsymbol{x}^{(k+1)} &= \boldsymbol{x}^{(k)} - \alpha (\boldsymbol{Q} \boldsymbol{x}^{(k)} - \boldsymbol{b}) = \boldsymbol{x}^{(k)} - \alpha (\boldsymbol{Q} \boldsymbol{x}^{(k)} - \boldsymbol{Q} \boldsymbol{x}^{*} \\ \text{we obtain} \quad \boldsymbol{x}^{(k+1)} - \boldsymbol{x}^{*} &= \boldsymbol{x}^{(k)} - \boldsymbol{x}^{*} - \alpha (\boldsymbol{Q} \boldsymbol{x}^{(k)} - \boldsymbol{Q} \boldsymbol{x}^{*}) \\ &= (\boldsymbol{I}_{n} - \alpha \boldsymbol{Q}) (\boldsymbol{x}^{(k)} - \boldsymbol{x}^{*}) \\ &= (\boldsymbol{I}_{n} - \alpha \boldsymbol{Q})^{k+1} (\boldsymbol{x}^{(0)} - \boldsymbol{x}^{*}) \\ &= (1 - \alpha \lambda_{max}(\boldsymbol{Q}))^{k+1} (\boldsymbol{x}^{(0)} - \boldsymbol{x}^{*}) \end{aligned}$$

Taking norms on both sides, we get

 $\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\| = |1 - \alpha \lambda_{max}(\boldsymbol{Q})|^{k+1} \|\boldsymbol{x}^{(0)} - \boldsymbol{x}^*\|$ Because $\alpha \leq 0$ or $\alpha \geq 2/\lambda_{max}(\boldsymbol{Q}), |1 - \alpha \lambda_{max}(\boldsymbol{Q})| \geq 1$ Hence, $\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\|$ cannot converge to 0, and thus the sequence $\{\boldsymbol{x}^{(k)}\}$ does not converge to \boldsymbol{x}^*

• Let the function *f* be given by

$$f(\boldsymbol{x}) = \boldsymbol{x}^T \begin{bmatrix} 4 & 2\sqrt{2} \\ 0 & 5 \end{bmatrix} \boldsymbol{x} + \boldsymbol{x}^T \begin{bmatrix} 3 \\ 6 \end{bmatrix} + 24$$

We wish to find the minimizer of f using a fixed-step-size gradient algorithm $\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} - \alpha \bigtriangledown f(\mathbf{x}^{(k)})$ where $\alpha \in R$ is a fixed step size.

 Solution: To apply Theorem 8.3, we first symmetrize the matrix in the quadratic term of *f* to get

$$f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^T \begin{bmatrix} 8 & 2\sqrt{2} \\ 2\sqrt{2} & 10 \end{bmatrix} \boldsymbol{x} + \boldsymbol{x}^T \begin{bmatrix} 3 \\ 6 \end{bmatrix} + 24$$

The eigenvalues of the matrix are 6 and 12. Hence, by Theorem 8.3, the algorithm converges to the minimizer for all $x^{(0)}$ if and only if α lies in the range $0 < \alpha < 2/12$

• Theorem 8.4: In the method of steepest descent applied to the quadratic function, at every step we have

$$V(\boldsymbol{x}^{(k+1)}) \leq \frac{\lambda_{max}(\boldsymbol{Q}) - \lambda_{min}(\boldsymbol{Q})}{\lambda_{max}(\boldsymbol{Q})} V(\boldsymbol{x}^{(k)})$$

• Proof: In the proof of Theorem 8.2, we showed that $\gamma_k \ge \lambda_{min}(\boldsymbol{Q})/\lambda_{max}(\boldsymbol{Q})$. Therefore, $\frac{V(\boldsymbol{x}^{(k)}) - V(\boldsymbol{x}^{(k+1)})}{V(\boldsymbol{x}^{(k)})} = \gamma_k \ge \frac{\lambda_{min}(\boldsymbol{Q})}{\lambda_{max}(\boldsymbol{Q})}$

and the result follows.

 $\left[V(\boldsymbol{x}^{(k+1)}) = (1 - \gamma_k) V(\boldsymbol{x}^{(k)}) \right]$

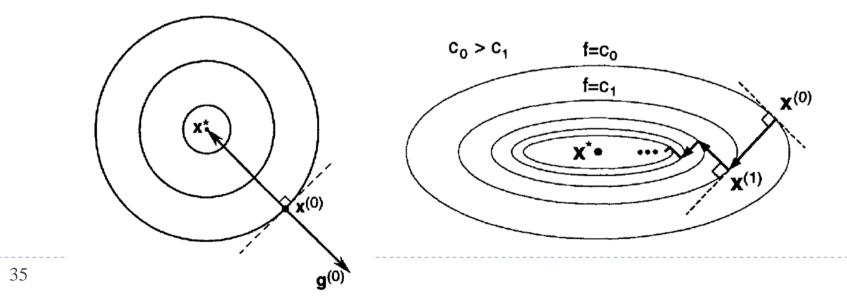
• Let
$$r = \frac{\lambda_{max}(\boldsymbol{Q})}{\lambda_{min}(\boldsymbol{Q})} = \|\boldsymbol{Q}\|\|\boldsymbol{Q}^{-1}\|$$

called the *condition number* of Q. Then, it follows from Theorem 8.4 that

 $V(\boldsymbol{x}^{(k+1)}) \le (1 - \frac{1}{r})V(\boldsymbol{x}^{(k)})$

- ► The term (1 1/r) plays an important role in the convergence of {V(x^(k))} to 0 (and hence of {x^(k)} to x*). We refer to (1 1/r) as the *convergence ratio*.
- The smaller the value of (1 1/r), the smaller V(x^(k+1)) will be relative to V(x^(k)), and hence the "faster" V(x^(k)) converges to 0.

- The convergence ratio (1 1/r) decreases as r decreases. If r = 1 then λ_{max}(Q) = λ_{min}(Q), corresponding to the circular contours of f (Figure 8.6). In this case the algorithm converges in a single step to the minimizer.
- As r increases, the speed of convergence of {V(x^(k))} (and hence {x^(k)}) decreases. The increase in r reflects that fact that the contours of f are more eccentric.



Definition 8.1: Given a sequence {x^(k)} that converges to x^{*}, that is, lim_{k→∞} ||x^(k) - x^{*}|| = 0, we say the *order of convergence* is p, where p ∈ R, if

If for all
$$p > 0$$

$$0 < \lim_{k \to \infty} \frac{\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\|}{\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|^p} < \infty$$
$$\lim_{k \to \infty} \frac{\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\|}{\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|^p} = 0$$

then we say that the order of convergence is $\ \infty$

 Note that in the definition above, 0/0 should be understood to be 0.

- The order of convergence of a sequence is a measure of its rate of convergence; *the higher the order, the faster the rate of convergence*.
- The order of convergence is sometimes also called the *rate of* convergence. If p = 1 and lim_{k→∞} ||x^(k+1) x^{*}|| / ||x^(k) x^{*}|| = 1 we say that the convergence is sublinear.
- If p = 1 and $\lim_{k\to\infty} ||\boldsymbol{x}^{(k+1)} \boldsymbol{x}^*|| / ||\boldsymbol{x}^{(k)} \boldsymbol{x}^*|| < 1$, we say that the convergence is *linear*.
- If p > 1, we say that the convergence is *superlinear*.
- If p = 2, we say that the convergence is *quadratic*.

• Suppose that $x^{(k)} = 1/k$ and thus $x^{(k)} \to 0$. Then, $\frac{|x^{(k+1)}|}{|x^{(k)}|^p} = \frac{1/(k+1)}{1/k^p} = \frac{k^p}{k+1}$

If p < 1, the sequence converges to 0, whereas if p > 1, it grows to ∞ . If p = 1, the sequence converges to 1. Hence, the order of convergence is 1.

• Suppose that $x^{(k)} = \gamma^k$, where $0 < \gamma < 1$, and thus $x^{(k)} \to 0$. Then, $\frac{|x^{(k+1)}|}{|x^{(k)}|^p} = \frac{\gamma^{k+1}}{(\gamma^k)^p} = \gamma^{k+1-kp} = \gamma^{k(1-p)+1}$

If p < 1, the sequence converges to 0, whereas if p > 1, it grows to ∞ . If p = 1, the sequence converges to γ . Hence, the order of convergence is 1.

• Suppose that $x^{(k)} = \gamma^{q^k}$, where q > 1 and $0 < \gamma < 1$, and thus $x^{(k)} \to 0$ Then, $|x^{(k+1)}| = \gamma^{(q^{k+1})} = a^{k+1} - na^k = (q-p)a^k$

$$\frac{|x^{(k+1)}|}{|x^{(k)}|^p} = \frac{\gamma^{(q-1)}}{(\gamma^{(q^k)})^p} = \gamma^{q^{k+1}-pq^k} = \gamma^{(q-p)q^k}$$

If p < q, the sequence converges to 0, whereas if p > q, it grows to ∞ . If p = q, the sequence converges to 1. Hence, the order of convergence is q.

Suppose that $x^{(k)} = 1$ for all k, and thus $x^{(k)} \rightarrow 1$. Then, $\frac{|x^{(k+1)} - 1|}{|x^{(k)} - 1|^p} = \frac{0}{0^p} = 0$

for all p. Hence, the order of convergence is ∞ .

- ► The order of convergence can be interpreted using the notion of the order symbol O. Recall that a = O(h) ("big-oh" of h) if there exists a constant c such that |a| ≤ c|h| for sufficiently small h.
- > The order of convergence is *at least* p if

$$\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\| = O(\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|^p)$$

Theorem 8.5: Let {x^(k)} be a sequence that converges to x*. If $\|x^{(k+1)} - x^*\| = O(\|x^{(k)} - x^*\|^p)$ then the order of convergence (if it exists) is at least means

then the order of convergence (if it exists) is at least p.

• Proof: Let *s* be the order of convergence of $\{\boldsymbol{x}^{(k)}\}$. Suppose that $\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\| = O(\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|^p)$

Then, these exists c such that for sufficiently large k,

$$\frac{\|\bm{x}^{(k+1)} - \bm{x}^*\|}{\|\bm{x}^{(k)} - \bm{x}^*\|^p} \le c$$

Hence,

$$\begin{split} \frac{\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\|}{\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|^s} \\ &= \frac{\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\|}{\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|^p} \|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|^{p-s} \\ &\leq c \|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|^{p-s} \end{split}$$

Taking limits yields

$$\lim_{k \to \infty} \frac{\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\|}{\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|^s} \le c \lim_{k \to \infty} \|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|^{p-s}$$

• Because by definition s is the order of convergence

$$\lim_{k\to\infty} \frac{\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\|}{\|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|^s} > 0$$

Combining the two inequalities above, we get
 $c \lim_{k\to\infty} \|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|^{p-s} > 0$

Therefore, because $\lim_{k\to\infty} ||\mathbf{x}^{(k)} - \mathbf{x}^*|| = 0$, we conclude that $s \ge p$ that is, the order of convergence is at least p.

- Similarly, we can show that if ||x^(k+1) x^{*}|| = o(||x^(k) x^{*}||^p) then the order of convergence (if it exists) strictly exceeds p.
- Suppose that we are given a scalar sequence {x^(k)} that converges with order of convergence p and satisfies

$$\lim_{k \to \infty} \frac{|x^{(k+1)} - 2|}{|x^{(k)} - 2|^3} = 0$$

The limit of $\{x^{(k)}\}$ must be 2, because it is clear from the equation that $|x^{(k+1)} - 2| \rightarrow 0$. Also, we see that $|x^{(k+1)} - 2| = o(|x^{(k)} - 2|^3)$. Hence, we conclude that p > 3

- Consider the problem of finding a minimizer of the function f: R → R given by f(x) = x² - x³/3. Suppose that we use the algorithm x^(k+1) = x^(k) - αf'(x^(k)) with step size α = 1/2 and initial condition x⁽⁰⁾ = 1
- We first show that the algorithm converges to a local minimizer of f. We have f'(x) = 2x - x². The fixed-step-size gradient algorithm is therefore given by

$$x^{(k+1)} = x^{(k)} - \alpha f'(x^{(k)}) = \frac{1}{2}(x^{(k)})^2$$

With $x^{(0)} = 1$, we can derive the expression $x^{(k+1)} = (1/2)^{2^{k}-1}$ Hence, the algorithm converges to 0, a strict local minimizer of f. Note that $\frac{|x^{(k+1)}|}{|x^{(k)}|^2} = \frac{1}{2}$

Therefore, the order of convergence is 2.

$\left[\boldsymbol{g}^{(k)} = \nabla f(\boldsymbol{x}^{(k)}) = \boldsymbol{Q}\boldsymbol{x}^{(k)} - \boldsymbol{b} \right]$

Convergence Rate

- The steepest descent algorithm has an order of convergence of 1 in the *worst case*.
- Lemma 8.3: In the steepest descent algorithm, if g^(k) ≠ 0 for all k then γ_k = 1 if and only if g^(k) is an eigenvector of Q.
- Proof: Suppose that g^(k) ≠ 0 for all k. Recall that for the steepest descent algorithm,

$$\gamma_{k} = \frac{(\boldsymbol{g}^{(k)T} \boldsymbol{g}^{(k)})^{2}}{(\boldsymbol{g}^{(k)T} \boldsymbol{Q} \boldsymbol{g}^{(k)})(\boldsymbol{g}^{(k)T} \boldsymbol{Q}^{-1} \boldsymbol{g}^{(k)})}$$

Sufficiency is easy to show by verification. To show necessity, suppose that $\gamma_k = 1$. Then, $V(\boldsymbol{x}^{(k+1)}) = 0$, which implies that $\boldsymbol{x}^{(k+1)} = \boldsymbol{x}^*$. Therefore, $\boldsymbol{x}^* = \boldsymbol{x}^{(k)} - \alpha_k \boldsymbol{g}^{(k)}$.

Convergence Rate $\boldsymbol{x}^* = \boldsymbol{x}^{(k)} - \alpha_k \boldsymbol{g}^{(k)}$

• Premultiplying by Q and subtracting b from both sides yields $0 = g^{(k)} - \alpha_k Q g^{(k)}$

which can be rewritten as

$$oldsymbol{Q}oldsymbol{g}^{(k)} = rac{1}{lpha_k}oldsymbol{g}^{(k)}$$

Hence, $g^{(k)}$ is an eigenvector of Q.

• By the lemma, if $g^{(k)}$ is not an eigenvector of Q, then $\gamma_k < 1$ (recall that γ_k cannot exceed 1)

- Theorem 8.6: Let {x^(k)} be a convergent sequence of iterates of the steepest descent algorithm applied to a function f. Then, the order of convergence of {x^(k)} is 1 in the worst case; that is, there exist a function f and an initial condition x⁽⁰⁾ such that the order of convergence of {x^(k)} is equal to 1.
- Proof: Let f : Rⁿ → R be a quadratic function with Hessian Q.
 Assume that the maximum and minimum eigenvalues of Q satisfy λ_{max}(Q) > λ_{min}(Q). To show that the order of convergence is 1, it suffices to show that there exists x⁽⁰⁾ such that

$$\| \boldsymbol{x}^{(k+1)} - \boldsymbol{x}^* \| \ge c \| \boldsymbol{x}^{(k)} - \boldsymbol{x}^* \|$$

for some c.

By Rayleigh's inequality

$$V(\boldsymbol{x}^{(k+1)}) = \frac{1}{2} (\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*)^T \boldsymbol{Q} (\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*) \le \frac{\lambda_{max}(\boldsymbol{Q})}{2} \| \boldsymbol{x}^{(k+1)} - \boldsymbol{x}^* \|^2$$

Similarly,
$$V(\boldsymbol{x}^{(k)}) \ge \frac{\lambda_{min}(\boldsymbol{Q})}{2} \| \boldsymbol{x}^{(k)} - \boldsymbol{x}^* \|^2$$

Combining the inequalities above with Lemma 8.1, we obtain

$$\|\boldsymbol{x}^{(k+1)} - \boldsymbol{x}^*\| \geq \sqrt{(1 - \gamma_k) \frac{\lambda_{min}(\boldsymbol{Q})}{\lambda_{max}(\boldsymbol{Q})}} \|\boldsymbol{x}^{(k)} - \boldsymbol{x}^*\|$$

Therefore, it suffices to choose $\boldsymbol{x}^{(0)}$ such that $\gamma_k \leq d$ for some d < 1

- Recall that for the steepest descent algorithm, assuming that $g^{(k)} \neq 0$ for all k, $\gamma_k = \frac{(g^{(k)T}g^{(k)})^2}{(g^{(k)T}Qg^{(k)})(g^{(k)T}Q^{-1}g^{(k)})}$
- First consider the case where n = 2. Suppose that x⁽⁰⁾ ≠ x* is chosen such that x⁽⁰⁾ − x* is not an eigenvector of Q. Then, $g^{(0)} = Q(x^{(0)} x^*) ≠ 0 \text{ is also not an eigenvector of } Q.$
- By Proposition 8.1, g^(k) = (x^(k+1) x^(k))/α_k is not an eigenvector of Q for any k [because any two eigenvectors corresponding to λ_{max}(Q) and λ_{min}(Q) are mutually orthogonal].
- Also, g^(k) lies in one of two mutually orthogonal directions. Therefore, by Lemma 8.3, for each k, the value of γ_k of two numbers, both of which are strictly less than 1. This proves the n = 2 case.

- For the general n case, let v₁ and v₂ be mutually orthogonal eigenvectors corresponding to λ_{max}(Q) and λ_{min}(Q). Choose x⁽⁰⁾ such that x⁽⁰⁾ − x^{*} ≠ 0 lies in the span of v₁ and v₂ but is not equal to either.
- Note that g⁽⁰⁾ = Q(x⁽⁰⁾ x^{*}) also lies in the span of v₁ and v₂, but is not equal to either.
- By manipulating x^(k+1) = x^(k) α_kg^(k) as before, we can write g^(k+1) = (I α_kQ)g^(k). Any eigenvector of Q is also an eigenvector of I α_kQ. Therefore, g^(k) lies in the span of v₁ and v₂ for all k; that is, the sequence {g^(k)} is confined within the two-dimensional subspace spanned by v₁ and v₂. We can now proceed as in the n = 2 case.