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� Recall that a level set of a function                   is the set of 
points     satisfying              for some constant   . Thus, a point 

is on the level set corresponding to level    if 

� In the case of functions of two real variables, 
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� The gradient of    at     , denoted by            , is orthogonal to the 
tangent vector to an arbitrary smooth curve passing through 
on the level set 

� The direction of maximum rate of increase of a real-valued 
differentiable function at a point is orthogonal to the level set 
of the function through that point. 

� The gradient acts in such a direction that for a given small 
displacement, the function    increases more in the direction of 
the gradient than in any other direction. 
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� Recall that                 ,             , is the rate of increase of    in the 
direction     at the point    . By the Cauchy-Schwarz inequality, 

because             . But if                                , then 

� Thus, the direction in which            points is the direction of 
maximum rate of increase of    at    . 

� The direction in which                points is the direction of 
maximum rate of decrease of    at    . 

� Hence, the direction of negative gradient is a good direction to 
search if we want to find a function minimizer. 

Cauchy-Schwarz inequality
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� Let        be a starting point, and consider the point 
Then, by Taylor’s theorem, we obtain

� If                     , then for sufficiently small          , we have 

� This means that the point                            is an improvement 
over the point        if we are searching for a minimizer. 
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� Given a point       , to find the next point          , we move by an 
amount                      , where      is a positive scalar called the 
step size. 

� We refer to this as a gradient descent algorithm (or gradient 
algorithm). The gradient varies as the search proceeds, tending 
to zero as we approach the minimizer. 

� We can take very small steps and reevaluate the gradient at 
every step, or take large steps each time. The former results in a 
laborious method of reaching the minimizer, whereas the latter 
may result in a more zigzag path the minimizer. 
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� Steepest descent is a gradient algorithm where the step size 
is chosen to achieve the maximum amount of decrease of the 
objective function at each individual step. 

� At each step, starting from the point       , we conduct a line 
search in the direction                   until a minimizer,          , is 
found. 
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� Proposition 8.1: If                is a steepest descent sequence for a 
given function                  , then for each    the vector 
is orthogonal to the vector 

� Proof: From the iterative formula of the method of steepest 
descent it follows that 

To complete the proof it is enough to show 

Observe that      is a nonnegative scalar that minimizes 
. Hence, using the FONC and the 

chain rule gives us
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� Proposition 8.2: If                is a steepest descent sequence for a 
given function                   and if                     , then 

� Proof: Recall that 

where            is the minimizer of 

over all          . Thus, for          , we have 

� By the chain rule, 

because                     by assumption. Thus,                and this 
implies that there is an           such that                      for all 
Hence, 



Descent Property

10

� Descent property:                              if 

� If for some    , we have                     , then the point        
satisfies the FONC. In this case,                    . We can use the 
above as the basis for a stopping criterion for the algorithm. 

� The condition                    , however, is not directly suitable as 
a practical stopping criterion, because the numerical 
computation of the gradient will rarely be identically equal to 
zero. 

� A practical criterion is to check if the norm                  is less 
than a prespecified threshold. 

� Alternatively, we may compute                             , and if the 
difference is less than some threshold, then we stop. 
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� Another alternative is to compute the norm                      , and 
we stop if the norm is less than a prespecified threshold. 

� We may check “relative” values of the quantities above

The two relative stopping criteria are preferable because they 
are “scale-independent.” Scaling the objective function does 
not change the satisfaction of the criterion. 

� To avoid dividing by very small numbers, modify as 
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� Use the steepest descent method to find the minimizer of 

The initial point is 

� We find that 

Hence, 

� To compute       , we need 

Using the secant method from Section 7.4, we obtain
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� Plot          versus  

� We compute 

� To find       , we first determine 
Next, we find 

Using the secant method again, we obtain 
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� Thus, 

� To find      , we first determine 

� The value 

� Note that the minimizer of    is 
and hence it appears that we have arrived 
at the minimizer in only three iterations.
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� A quadratic function of the form 

where                 is a symmetric positive define matrix,            
and            . The unique minimizer of    can be found by setting 
the gradient of to zero, where 

because                                                   and 
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� The Hessian of  is                               . To simplify the 
notation we write                        . Then, for the steepest descent 
algorithm for the quadratic function can be represented as 

where 

� In the quadratic case, we can find an explicit formula for     . 
Assume that             , for if             , then               and the 
algorithm stops. 
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� Because            is the minimizer of                                   , we 
apply the FONC to           to obtain

� Therefore,                if 
But, 

Hence, 

� In summary, the method of steepest descent for the quadratic 
stakes the form
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� Let                           . Then, starting from an arbitrary initial 
point              , we arrive at the solution                    at only one 
step. 

� However, if                            , then the method of steepest 
descent shuffles ineffectively back and forth when searching 
for the minimizer in a narrow valley. This example illustrates a 
major drawback in the steepest descent method. 
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� In a descent method, as each new point is generated by the 
algorithm, the corresponding value of the objective function 
decreases in value. 

� An iterative algorithm is globally convergent if for any 
arbitrary starting point the algorithm is guaranteed to generate a 
sequence of pints converging to a point that satisfies the FONC 
for a minimizer. 

� If not, it may still generate a sequence that converges to a point 
satisfying the FONC, provided that the initial point is 
sufficiently close to the point. 
� Locally convergent

� How fast the algorithm converges to a solution point: rate of 
convergence
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� The convergence analysis is more convenient if instead of 
working with    we deal with 

where                   . The solution point      is obtained by solving
; that is, 

� The function     differs from     only by a constant 
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� Lemma 8.1: The iterative algorithm 

with                          satisfies

where if             , then           , and if            , then 
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� Theorem 8.1: Let          be the sequence resulting from a 
gradient algorithm                               . Let      be as defined in 
Lemma 8.1, and suppose that            for all    . Then,           
converges to      for any initial condition       if and only if 

� Proof: 

� From Lemma 8.1 we have                                         , from 
which we obtain 

� Assume that           for all   , for otherwise the result holds 
trivially. 
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� Note that                if and only if                   . We see that this 
occurs if and only if                         , which, in turn, holds if 
and only if 

� Note that by Lemma 8.1,                 and                 is well 
defined [          is taken to be        ]. Therefore, it remains to 
show that                                    if and only if 

� We first show that                    implies that                                  . 
For this, first observe that for any                   , we have 

. Therefore,                                             , and 
hence                           . Thus, if                    , then clearly 
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� Finally, we show that                                   implies that 

� By contraposition. Suppose that                   . Then, it must be 
that           . Observe that for                    and    sufficiently 
close to 1, we have                         . Therefore, for sufficiently 
large   ,                                                 , which implies that 

. Hence,                     implies that 
. This completes the proof. 

� The assumption in Theorem 8.1 that           for all    is 
significant. Furthermore, the result of the theorem does not 
hold in general if we do not have this assumption. 
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� A counter example to show            in Theorem 8.1 is necessary.

� For each                   , choose      in such a way that 
and                   (we can always do this if, for example,            ). 
From Lemma 8.1 we have 

Therefore,                   . Because                                      , we 
also have that                      . 
Hence,                  , which implies that              (for all       ). On 
the other hand, it is clear that 

for all   . Hence, the result of the theorem does not hold if 
for some   . 
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� Rayleigh’s inequality. For any                   , we have 

We also have 
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� Lemma 8.2: Let                   be an           real symmetric positive 
definite matrix. Then, for any           , we have 

� Proof: Appling Rayleigh’s inequality and using the properties 
of symmetric positive definite matrices listed previously, we 
get
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� Theorem 8.2: In the steepest descent algorithm, we have 
for any 

� Proof: If              for some   , then               and the result holds. 
So assume that              for all   . Recall that for the steepest 
descent algorithm,

Substituting this expression for     in the formula for     yields 

Note that in this case           for all   . Furthermore, by Lemma 
8.2, we have                                           . Therefore, we have 

, and hence by Theorem 8.1, we conclude that 
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� Consider now a gradient method with fixed step size; that is, 
for all    . The resulting algorithm is of the form 

� We refer to the algorithm above as a fixed-step-size gradient 
algorithm. The algorithm is of practical interest because of its 
simplicity. 

� The algorithm does not require a line search at each step to 
determine     . Clearly, the convergence of the algorithm 
depends on the choice of    . 
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� Theorem 8.3: For the fixed-step-size gradient algorithm, 
for any       if and only if 

� Proof:       : By Rayleigh’s inequality we have 

and 

� Therefore, substituting the above in the formula for    , we have 

Therefore,            for all   , and                    . Hence, by 
Theorem 8.1, we conclude that 
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� Proof:       : We use contraposition. Suppose that either          or 
. Let       be chosen such that             is an 

eigenvector of corresponding to the eigenvalue . 
Because 

we obtain

Taking norms on both sides, we get 

Because           or                      ,
Hence,                     cannot converge to 0, and thus the 
sequence          does not converge to    
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� Let the function    be given by 

We wish to find the minimizer of     using a fixed-step-size 
gradient algorithm 
where            is a fixed step size. 

� Solution: To apply Theorem 8.3, we first symmetrize the matrix 
in the quadratic term of f to get 

The eigenvalues of the matrix are 6 and 12. Hence, by Theorem 
8.3, the algorithm converges to the minimizer for all        if and 
only if     lies in the range 
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� Theorem 8.4: In the method of steepest descent applied to the 
quadratic function, at every step we have 

� Proof: In the proof of Theorem 8.2, we showed that 
. Therefore, 

and the result follows. 
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� Let 

called the condition number of     . Then, it follows from 
Theorem 8.4 that 

� The term               plays an important role in the convergence of 
to 0 (and hence of           to      ). We refer to               

as the convergence ratio. 

� The smaller the value of              , the smaller               will be 
relative to            , and hence the “faster”             converges to 0. 
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� The convergence ratio               decreases as    decreases. If 
then                             , corresponding to the circular contours 
of   (Figure 8.6). In this case the algorithm converges in a 
single step to the minimizer. 

� As    increases, the speed of convergence of                (and 
hence           ) decreases. The increase in    reflects that fact that 
the contours of are more eccentric. 
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� Definition 8.1: Given a sequence           that converges to     , 
that is,                                  , we say the order of convergence
is    , where          , if 

If for all

then we say that the order of convergence is  

� Note that in the definition above, 0/0 should be understood to 
be 0. 
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� The order of convergence of a sequence is a measure of its rate 
of convergence; the higher the order, the faster the rate of 
convergence. 

� The order of convergence is sometimes also called the rate of 
convergence. If          and 
we say that the convergence is sublinear. 

� If          and                                                          , we say that 
the convergence is linear. 

� If         , we say that the convergence is superlinear. 

� If         , we say that the convergence is quadratic. 
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� Suppose that                 and thus              . Then, 

If          , the sequence converges to 0, whereas if         , it grows 
to      . If         , the sequence converges to 1. Hence, the order 
of convergence is 1. 

� Suppose that              , where               , and thus              . Then, 

If          , the sequence converges to 0, whereas if         , it grows 
to      . If         , the sequence converges to     . Hence, the order 
of convergence is 1. 
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� Suppose that              , where          and                , and thus  
Then, 

If          , the sequence converges to 0, whereas if         , it grows 
to      . If         , the sequence converges to  1. Hence, the order 
of convergence is    . 

� Suppose that             for all   , and thus             . Then, 

for all    . Hence, the order of convergence is    . 
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� The order of convergence can be interpreted using the notion of 
the order symbol    .  Recall that                (“big-oh” of    ) if 
there exists a constant    such that                for sufficiently 
small    . 

� The order of convergence is at least    if 
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� Theorem 8.5: Let          be a sequence that converges to     . If 

then the order of convergence (if it exists) is at least   .

� Proof: Let    be the order of convergence of          . Suppose that 

Then, these exists such that for sufficiently large , 

Hence, 
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� Taking limits yields

� Because by definition is the order of convergence

Combining the two inequalities above, we get 

Therefore, because                                  , we conclude that 
that is, the order of convergence is at least . 
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� Similarly, we can show that if 
then the order of convergence (if it exists) strictly exceeds   . 

� Suppose that we are given a scalar sequence          that 
converges with order of convergence    and satisfies 

The limit of           must be 2, because it is clear from the 
equation that                       . Also, we see that 

. Hence, we conclude that 
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� Consider the problem of finding a minimizer of the function 
given by                       . Suppose that we use the 

algorithm                                    with step size              and 
initial condition 

� We first show that the algorithm converges to a local minimizer
of   . We have                       . The fixed-step-size gradient 
algorithm is therefore given by 

With             , we can derive the expression 
Hence, the algorithm converges to 0, a strict local minimizer
of    . Note that

Therefore, the order of convergence is 2. 
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� The steepest descent algorithm has an order of convergence of 
1 in the worst case. 

� Lemma 8.3: In the steepest descent algorithm, if             for all 
then            if and only if       is an eigenvector of    . 

� Proof: Suppose that              for all   . Recall that for the 
steepest descent algorithm, 

Sufficiency is easy to show by verification. To show necessity, 
suppose that           . Then,                     , which implies that 

. Therefore,                           . 
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� Premultiplying by     and subtracting     from both sides yields

which can be rewritten as 

Hence,       is an eigenvector of    . 

� By the lemma, if       is not an eigenvector of    , then           
(recall that      cannot exceed 1)
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� Theorem 8.6: Let          be a convergent sequence of iterates of 
the steepest descent algorithm applied to a function   . Then, the 
order of convergence of           is 1 in the worst case; that is, 
there exist a function    and an initial condition       such that the 
order of convergence of           is equal to 1. 

� Proof: Let                  be a quadratic function with Hessian     . 
Assume that the maximum and minimum eigenvalues of     
satisfy                            . To show that the order of convergence 
is 1, it suffices to show that there exists       such that 

for some   . 
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� By Rayleigh’s inequality

Similarly, 

Combining the inequalities above with Lemma 8.1, we obtain

Therefore, it suffices to choose        such that            for some 
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� Recall that for the steepest descent algorithm, assuming that 
for all   , 

� First consider the case where         . Suppose that               is 
chosen such that                is not an eigenvector of    . Then, 

is also not an eigenvector of    . 

� By Proposition 8.1,                                      is not an 
eigenvector of     for any    [because any two eigenvectors 
corresponding to              and              are mutually orthogonal]. 

� Also,        lies in one of two mutually orthogonal directions. 
Therefore, by Lemma 8.3, for each   , the value of     of two 
numbers, both of which are strictly less than 1. This proves the 

case. 
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� For the general    case, let      and      be mutually orthogonal 
eigenvectors corresponding to              and             . Choose 
such that                      lies in the span of     and      but is not 
equal to either. 

� Note that                             also lies in the span of     and     , 
but is not equal to either. 

� By manipulating                                 as before, we can write 
. Any eigenvector of     is also an 

eigenvector of              . Therefore,        lies in the span of     
and      for all   ; that is, the sequence          is confined within 
the two-dimensional subspace spanned by     and     . We can 
now proceed as in the   case. 


