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Introduction

» Recall that devel set of a functionf : " — R Is the set of
pointsz satisfying(z) =c for some constant . Thus, a point
xo € R" IS on the level set corresponding to level f(ify) = ¢

» In the case of functions of two real variablesk? — R

o | z=f(x4,Xo)
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Introduction
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The gradient of at, , denoted<by(x) , Is orthogonal to the
tangent vector to an arbitrary smooth curve passing thraiigh
on the level sef(x) = ¢

The direction of maximum rate of increase of a real-valued
differentiable function at a point is orthogonal to the level set
of the function through that point.

The gradient acts in such a direction that for a given small
displacement, the functigh increases more in the direction of
the gradient than in any other direction.

1 |
i 1
| |
! |
i |
[} ]
< | I
)‘a\\ .. Level set (curve)

V1(Xo)



Introduction
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(V). d) < |vfl@)]lvd|
Cauchy-Schwarz inequality

Recall that(/ f(x),d) |d||=1 , Is the rate of increage of in the
directiond atthe point . By the Cauchy-Schwarz inequality,

(Vf(z),d) <|vflz)]

becaused| =1 .Butd=vf(z)/|vf(z)| , then
Vi) \ _ .
(Vi) L) = v @)l

Thus, the direction in whickyf(z)  points is the direction of
maximum rate of increase ¢f at

The direction in which <7 f(z©  points is the direction of
maximum rate of decrease fof at

Hence, the direction of negative gradient is a good direction to
search if we want to find a function minimizer.



Introduction

» Let (¥ be a starting point, and consider the pgitit- o 7 f(z")
Then, by Taylor’s theorem, we obtain
f@ — a7 f(&) = f(z) - al|7 f(2)]* + o(a)
» If vf(z") #£0 |, then for sufficiently small-0 , we have
[ — a7 fa) < f(a)

» This means that the poigt® — o <7 f(z©) IS an improvement
over the pointz(®© if we are searching for a minimizer.
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Given a pointz® | to find the next poiddt+  , we move by an
amount—a; v f(z™), |, whesg  is a positive scalar called the
step size.

20+ = 20 o) o F(2®)

We refer to this as gradient descent algorithm (or gradient
algorithm). The gradient varies as the search proceeds, tending
to zero as we approach the minimizer.

We can take very small steps and reevaluate the gradient at
every step, or take large steps each time. The former results in a
laborious method of reaching the minimizer, whereas the latter
may result in a more zigzag path the minimizer.



The Method of Steepest Descent

» Steepest descent is a gradient algorithm where the step size
IS chosen to achieve the maximum amount of decrease of the
objective function at each individual step.

ay, = arg mingsg f(z'X) — a7 f(z™))

» At each step, starting from the po#ttY  , we conduct a line
search in the directionw (")  until a minimizgt;* S
found.
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Proposition 8.1: Ifz™}>  is a steepest descent sequence for a
given functionf : R» — R, then for each the vegtob — z*
is orthogonal to the vectaf+2) — pk+1)

Proof. From the iterative formula of the method of steepest
descent it follows that

(D) — 0 g2 — ) = o1 (T f (™), 7 f(2FHD))
To complete the proof it is enough to show

(7 f(@W), 7 f(x*F)) =0
Observe that,, Is a nonnegative scalar that minimizes

or(a) = f(z) — a7 f(z™)) . Hence, using the FONC and the
chain rule gives us

0 = @) = G (on)

= v f(@® — a7 fl@&") (= 7 faD)) = (7 f(@*V), faV))



Proposition 8.2

» Proposition 8.2: Ifz™}>* . is asteepest descent sequence for a

given functions: r» — B andiff(z®)£0 , the ) < f(x®)
» Proof: Recall that
2D — g0 _ o o f(z®)

where o, > 0 IS the minimizer of

or(a) = f&™) — a7 fz™)
overalla>0 . Thus, far>0 , we haye) < éia)

» By the chain rule,
6,(0) = G2(0) = (vf( V=0 f@) (7 fa®) = — v fa®)]? < 0

becauseyf(z¥)£0 by assumption. Thus) < 0 and this
implies that thereisaa >0  such thab) > ¢.(a) faralb, a
Hence,

F@® ) = gp(au) < grl@) < ¢1,(0) = f(z™))



Descent Property

» Descent property: f(z*)) < f(z®)) if7f(z®)#£0
» If for someg , we haverf(z*))=0 , then the pgint

satisfies the FONC. In this casg!t!) = z® . We can use the
above as the basis for a stopping criterion for the algorithm.

» The conditiony f(z*) =0 , however, is not directly suitable as
a practical stopping criterion, because the numerical
computation of the gradient will rarely be identically equal to
Zero.

» A practical criterion is to check if the norny f(z™)| is less
than a prespecified threshold.
» Alternatively, we may computgé(z“+1) — f(z*) ,and if the

difference is less than some threshold, then we stop.

10



Descent Property
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Another alternative is to compute the ngrat+t) — z*)| , and
we stop if the norm is less than a prespecified threshold.

We may check “relative” values of the guantities above
faY) — fa) [ — 2]

< €
[ f (k) (B2 ||

The two relative stopping criteria are preferable because they

are “scale-independent.” Scaling the objective function does

not change the satisfaction of the criterion.

To avoid dividing by very small numbers, modify as
f@™) = f@)] ety |
max{l, | f(z®)} manc{ 1, ||:13 S

11



Example

» Use the steepest descent method to find the minimizer of
flay, xg,23) = (21 — 4)* + (22 — 3)* + 4(23 4 5)*
The initial point isz© = 4,2, —1]7
» We find that
vf(z) = [4a1 - 4)°,2(x2 — 3), 16(z3 + 5)°]"
Hencey f(z) = [0, —2,1024]"
» To compute:) , we need
ap = argmin, > f(z® — a7 f(z))
= arg ming>o(0 + (2 + 2a — 3)* + 4(—1 — 1024 + 5)%)

= argming>o go(e)
Using the secant method from Section 7.4, we obtain

ap = 3.967 x 1073

12



Example

» Plot¢g(a) versus

» We compute
M) = 20 — oy 7 f(2) = [4.000,2.008, —5.062]”

» To find £ , we first determingf (=) = [0.000, —1.994, —0.003875]"
Next, we findq,
o = arg ming>o(0 + (2.008 + 1.984a — 3)% 4 4(—5.062 4 0.003875cx + 5)4)
= arg min, > ¢1(«)
Using the secant method again, we obtaia 0.5000

0p(®) 93()
7000 —_— 1 .

6000
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5000
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Example

» Thus,z® =z — o 7 f(2W) = [4.000, 3.000, —5.060]7

» To findz® , we first determineg f(z®) = [0.000, 0.000, —0.003525]"
(g = arg ming>o(0.000 + 0.000 + 4(—5.060 + 0.003525c + 5)4)
= arg ming, > ¢2(a)

a; = 16.29

» The valuer® = [4.000, 3.000, —5.002]"

» Note that the minimizer of s 3, —5]”
and hence it appears that we have arr
at the minimizer in only three iterations |

dy ()

x 108

14




Steepest Descent for Quadratic Function

» A quadratic function of the form
flx)=1z"Qz — b'x
whereQ € R™" Is a symmetric positive define mayix,r”

and z € R* . The unique minimizerf can be found by setting
the gradient of to zero, where

V(@) =Qx b
becaus®(z"Qzxz) = 27 (Q + Q") = 227Q 2Abtk) = b*

15



Steepest Descent for Quadratic Function

» The Hessian of ig(z)=Q=Q" >0 . To simplify the
notation we writeg®) = w f(2®) . Then, for the steepest descent
algorithm for the quadratic function can be represented as

k+1) k)

24D — ) _ o g®

where
Q. — arg miﬂazo f(:lj(k) — ag(k)>

— arg mingsg (%@(k) —agMTQ(z® — ag®) — (x® — ag(k‘)>Tb)

» In the quadratic case, we can find an explicit formula.for
Assume thagy®) 20 ,forif® =0 , thel = and the
algorithm stops.

16



———————————————————————————————

Steepest Descent for Quadratic Function

» Becausey. >0 is the minimizer of(a) = f(x™ — ag®) , we
apply the FONC tay,.(«0  to obtain
() = (2 — ag®)TQ(—g™) — b (—g'*)
» Thereforeg,(a) =0 hg™TQg"® = ("TQ — bT)g*

But, w(kz)TQ _pT = g(k)T

Hence, _ gMTg®
U= BT Qg™

» In summary, the method of steepest descent for the quadratic
stakes the form

()T o (F
20— 979l e = Qa — b

B41) B g
g(k)TQg(k)

2
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Example

» Letf(zy,29) =27+ 25 . Then, starting from an arbitrary initial
point (¥ ¢ R? , we arrive at the solutigh= 0 € Rr? at only one
step.

» However, if f(z;,2,) =2 + 22, then the method of steepest
descent shuffles ineffectively back and forth when searching
for the minimizer in a narrow valley. This example illustrates a
major drawback in the steepest descent method.

18



Convergence

4

In adescent method, as each new point is generated by the
algorithm, the corresponding value of the objective function
decreases in value.

An iterative algorithm igjlobally convergent if for any

arbitrary starting point the algorithm is guaranteed to generate a
sequence of pints converging to a point that satisfies the FONC
for a minimizer.

If not, it may still generate a sequence that converges to a point
satisfying the FONC, provided that the initial point is
sufficiently close to the point.

Locally convergent

How fast the algorithm converges to a solution paogite of
convergence

19



——————————————————————

Convergence AR S .

4

The convergence analysis is more conhvenient if instead of
working with f we deal with

V(iz) = f(x) + 527 Qx* = j(x — x*)|Q(x — x7)
whereQ = Q' >0 . The solution poitt  is obtained by solving
Qr=0>b;thatisxz*=Q'b

The functionv differs frond  only by a constaat’ Q*

20



———————————————————————————————

» Lemma 8.1: The iterative algorithm

2+1) = g0 _ g, g®)

with ¢t = Q2™ —p satisfies
V(@) = (1 — )V (")
where if¢g®) =0 ,theR, =1 ,andt <0 ,then

gMTQgh) (2 g gk )
Q

_q(k?)TQ_lg(k) g(k)TQg(k) N

Y = O

21



Convergence
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Theorem 8.1: Lefte™}  be the sequence resulting from a
gradient algorithng#+1) = £ — o, g . ket  be as defined In
Lemma 8.1, and suppose that> 0 forall . Theh)
converges tac*  for any initial conditiaf?)  if and only if

220:0 Ve — OO
Proof:

From Lemma 8.1 we havie(z*1)
which we obtain

Viah) = (50— Vi)
Assume that, <1 for all , for otherwise the result holds
trivially.

(1 =)V (z™) , from

22



Ve = (50 -W)VE?)
Convergence | Y& =f(@) i@ Q=4 - 27)Qx - z7)

» Note thatz*) — z* if and only if(z™) -0 . We see that this
occurs if and only if [.=o(1 =) =0, which, in turn, holds if
and only if T[T, — log(1 — ;) = >

» Note that by Lemma 8.1,—;, >0  angdi — ;) Is well
defined [log(0) istakento bex ]. Therefore, it remains to
show that][;Z, —log(1 — ;) = o0 If and only if

Z?in i = &0
» We first show thad_ "7 =cc  implies that, —log(l1 — ;) =
For this, first observe that for anye R,z > 0 , we have
log(z) <z —1. Therefore,log(l1 — ) <1 -7 —-1=—9, , and
hence—log(1—~;) >~ . Thusif®,v = o , then clearly

> g —log(l = ;) = o0

23



Convergence

» Finally, we show thaf>°, —log(1 —v)=occ  implies ¥bat 7 = o
» By contraposition. Suppose that',7 <o . Then, it must be
that v — 0 . Observe that fere R, = < 1 and sufficiently
close to 1, we havieg(z) > 2(x — 1, . Therefore, for sufficiently
large i Jog(1 — ;) >2(1 -7, — 1) = —2v, , which implies that
—log(1 — ;) < 2v. Hence,> ;"7 < oo implies that
> g —log(1 — ;) < 0o, This completes the proof.

» The assumption in Theorem 8.1 that 0 forall s
significant. Furthermore, the result of the theorem does not
hold in general if we do not have this assumption.

24



Example
» A counter example to show. >0  in Theorem 8.1 is necessary.
» Foreachk =0,1,2,... ,choaoge insuch awaythat—1/2

and 1 =1/2 (we can always do this if, for example,1,, ).

From Lemma 8.1 we have

V(2 = (1 —1/2)1+1/2)V (x®M) = (3/4)V (M)
Thereforey (z*) — 0 . Becausg®*+) = (3/2)V (x®) , we
also have that(z*+Y) -0 .
HenceV(z*) — 0 , which implies that — 0 (foec&ll ). On
the other hand, it is clear that

ZL 072—2

for all ©. Hence, the result of the theorem does not hold if
v < 0 for some: .

25



Convergence

» Rayleigh’s inequality. Forang = Q* >0 , we have

Anin(Q)]|2)* < &' Q< Xy (Q) || ||
We also have

)\mm(Q_l) —
)\max(Q_l) —

1
1

Anin( @ l|2]* < 2" Q7 e < X (Q 1) |

26



Convergence

» Lemma 8.2: LeQ =Q' >0 be ann real symmetric positive
definite matrix. Then, for any ¢ r* , we have
Amin(Q) < (wTw>2 Amaz(Q)
Amar(Q) ~ (wTQm><33TQ_1w> Amin(Q)

» Proof: Appling Rayleigh’s inequality and using the properties
of symmetric positive definite matrices listed previously, we
get

<

@'z E& Q)
(wTQwaTQ—lw) B )"m'm(Q)”sz)‘miH(Q_l)HwHQ )‘mm(Q>
(")’ 1R (@)
(®7Qx)(xTQ'®) ~ Mnar( Q)& Anar (@ (> Ainaa(@Q)

27



—————————————————————————

Convergence

» Theorem 8.2: In the steepest descent algorithm, we have
z*) — z* for any z(©

» Proof: If g*) =0 for some , theyt) — and the result holds.
So assume that*) £0  forall . Recall that for the steepest
descent algorithm,

g gh)
- gWTQg k)
Substituting this expression foy  In the formula-for  yields
(g(k)Tg(k))Q

(gWTQgW)(gHTQ ™ g)

Note that in this case >0 forall . Furthermore, by Lemma

8.2, we havey, > (Min(Q)/ M na(Q)) > 0 . Therefore, we have

> o = 00, and hence by Theorem 8.1, we concludethat- z*

Ak

Tk =

28



Convergence

» Consider now a gradient method with fixed step size; that is,

o, =a € R for all & . The resulting algorithm is of the form
2D = ) _ k)

» We refer to the algorithm above afed-step-size gradient
algorithm. The algorithm is of practical interest because of its
simplicity.

» The algorithm does not require a line search at each step to

determiney, . Clearly, the convergence of the algorithm
depends on the choice of

29



Convergence

» Theorem 8.3: For the fixed-step-size gradient algorithm,
x*) — g+ for anyz© if and only if
2

D<a< Q)

» Proof: < : By Rayleigh’s inequality we have
Ain(@)gH T g™ < gWT Qg™ < X,0.(Q)g* T g™

and '
WTQ1qk) < (K)T g (k)
» Therefore, substituting the above in the formulayfor , we have
2
. 2 _
w2 el @1(5 gy ) > ¢
Therefore, >0 forall , and,_,w=0o . Hence, by

Theorem 8.1, we conclude that) — z*

30



Convergence

» Proof: — : We use contraposition. Suppose that eitker
a>2/ M@ . Letz® be chosen such thdt- IS an
eigenvector ok corresponding to the eigenvalugQ)
Because

) = 20 _ 0 (Qx® — b) = 2*) — o(Qx™® — Qz*
we obtain 41 _ p+ — 20 _ g+ _ o(Qa® — Qu*)

(L, — aQ)(w(k) — )
(In . &Q)kH(w(O) . x*>

(1 o CV)‘ma:E(Q»k_'_l(w(o) o CU*>
Taking norms on both sides, we get
|2 — 2| = 1 = adnea( Q) [ — 2|
Because)é S 0 @rZ 2/)\max<Qj ’1 ] Oz}‘ma:v(Q)‘ Z 1
Hence|z**) —2*| cannot converge to 0, and thus the

sequencéz®)}  does not converge*to
31



Example
» Let the functiory be given by

(@) = 27 lg 2ﬂ z+ o’ [2] o

We wish to find the minimizer of using a fixed-step-size
gradient algorithmz(+) = £ — o 7 f(2™)
wherea € R IS a fixed step size.

» Solution: To apply Theorem 8.3, we first symmetrize the matrix
In the quadratic term dfto get

flz) = 52" [2\8@ Qﬂ x+ ! [2] + 24

The eigenvalues of the matrix are 6 and 12. Hence, by Theorem
8.3, the algorithm converges to the minimizer foragll if and
only if o lies in the range < o < 2/12

32



Convergence Rate

» Theorem 8.4: In the method of steepest descent applied to the
guadratic function, at every step we have

Amax(Q) - >‘mm<Q)
(k+1) (k)
V(:B k+1 ) < )\max(Q) V(CB )

» Proof: In the proof of Theorem 8.2, we showed that
Vi > Amin(Q)/ Amaz(@Q). Therefore,
V(w(k)> o V<33(k+1)> /\min<Q>
S L W ()
and the result follows.

33



Convergence Rate

4

Let (@) i

called thecondition number of @ . Then, it follows from
Theorem 8.4 that

Vet D) < (1= )V(z™)
The term(1 —-1/r) plays an important role in the convergence of
{V(z)} to O (and hence ofz"} t& ). We refento1/r)
as theconvergenceratio.

The smaller the value of — 1/r) , the smallg+1) will be
relative tov(z®) , and hence the “fasterz*)) converges to 0.

34



Convergence Rate

» The convergence ratio — 1/r) decreases as decreases. If
then),...(Q) = M\...(Q) , corresponding to the circular contours
of f/ (Figure 8.6). In this case the algorithm converges in a
single step to the minimizer.

» As r increases, the speed of convergenge @f*)} (and
hence{z*)} ) decreases. The increase in reflects that fact that
the contours of are more eccentric.

35



Convergence Rate

» Definition 8.1: Given a sequen¢g*)} that converggesto
that is,lim;_.||lz® —z*| =0 , we sayahder of convergence
ISp ,wherepe R |, If

Hw (k+1) _ w*H
0 < limy_, o < oC
If for all p >0 |a®) — ||
- ||CC (k+1) _ w*H
limy o =0
T ® —

then we say that the order of convergence is

» Note that in the definition above, 0/0 should be understood to
be 0.

36



Convergence Rate

» The order of convergence of a sequence is a measure of its rate
of convergencehe higher the order, the faster the rate of
convergence.

» The order of convergence is sometimes also callechtbef
convergence. If p=1 and lim;_|z*Y — z*|/||c™ — x*|| = 1
we say that the convergencesislinear.

» If p=1 and limy_||x* Y — z*||/||x™ — x*|| < 1 , we say that
the convergence Isnhear.

» If p>1, we say that the convergenceuperlinear.
» If p=2, we say that the convergencegusadratic.

37



Example

» Suppose that®) =1/k  and thifs - ¢ . Then,
D) 1k 1) R
B 1k k+1
If p <1 ,the sequence converges to O, whereas if , It grows

to o . Ifp=1 , the sequence converges to 1. Hence, the order
of convergence is 1.

» Suppose that*) = ~* | where ~ < 1 , and ¢hus: ¢ . Then,
2] _ e = yhtl=kp — o k(1=p)+
[z ®e - (yF)p
If p <1 ,the sequence converges to O, whereas if , It grows

to ~ .Ifp=1,the sequence converges to . Hence, the order
of convergence is 1.

38



Example

» Suppose that*) = v« |, where 1 ardy < 1 , and‘thus;
Then k
b} k41 +1
\:z:( ' )| _ 7<q ) _ ,qu+1—qu _ fy(q—p)q"
|Q’j(k)|p (fy(qk)jp
If » <¢ ,the sequence converges to O, whereas if , It grows

to « . Ifp=¢ , the sequence convergesto 1. Hence, the order
of convergence is
» Suppose that® =1 for all , and this— 1 . Then,
‘x(kﬂ-l) _ 1’ 0
lz®&) —1|p op
for all p . Hence, the order of convergenceois

39



Convergence Rate

» The order of convergence can be interpreted using the notion of
the order symbob . Recall that- O(h) (“big-oh%of ) if
there exists a constant such thpk c|h/| for sufficiently
small n .

» The order of convergenceasleast p if

|2~z = Ol — 2*||P)

40



Convergence Rate

» Theorem 8.5: Lefte'®)}  be a sequence that converges to . If
|z — 2| = O(|Ja™ — a*|7)
then the order of convergence (if it exists) is at Igast
» Proof: Lets be the order of convergencegof) . Suppose that
|l — 2| = O([la™ — a*||7)
Then, these exists such that for sufficiently large

Hw(/ﬁ—l) . w*H
C
CRErd
Hence, (R ——
) — &=||s
(k+1) *
HCB £ H Hw<k> w*Hp—s

41



Convergence Rate
» Taking limits yields

k) |

(
Xr ) e
H||:13(’€> —e S il — 2t

» Because by definition is the order of convergence

Hw(lﬁ—l) . w*H

™) — 2|+
Combining the two inequalities above, we get

¢ limy_ oo || — 2*|[P~* > 0

lmy_ e > ()

Therefore, becausey; . ||z — z*|| = 0 , we conclude that
that is, the order of convergence is at least

42



Example

» Similarly, we can show that jic**!) — z*|| = o(||z® — z* ||’
then the order of convergence (if it exists) strictly exceeds

» Suppose that we are given a scalar sequgricg that
converges with order of convergence and satisfies
_ ‘x(k‘-i-l) _ 2’
limy_ o 20 o =0

The limit of {z(*)} must be 2, because it is clear from the
equation that:*+) —2| — 0 . Also, we see that
2+ — 2| = o(|z®) — 23). Hence, we conclude that- 3

43



Example

» Consider the problem of finding a minimizer of the function
f: R — R given byf( ) =2 — %3 . Suppose that we use the
algorithm 1) = () — o f'(2)  with step sdze 1/2 and
initial conditionz(© = |

» We first show that the algorithm converges to a local minimizer
of /. We havef'(z) =2z — 2> . The fixed-step-size gradient
algorithm is therefore given by

ph+1) — &f/( ) (x(k))Q
With 2 =1 , we can derive the expressidit?) = (1/2)* !
Hence, the algorlthm converges to 0O, a strict local minimizer
of f . Note that PG|
®2 2
Therefore, the order of convergence is 2.

44
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Convergence Rate

» The steepest descent algorithm has an order of convergence of
1 in theworst case.

» Lemma 8.3: In the steepest descent algorithgt) i o for all
then~, =1 Iifandonly §*» is an eigenvectogof

» Proof: Suppose that? o0  for all . Recall that for the
steepest descent algorithm,

(g Tgh)2

(gWTQg™)(gWTQ™"gh)

Sufficiency is easy to show by verification. To show necessity,
suppose that, =1 . Thanz*+)) =g , which implies that
1) = ¢*, Thereforex* = 2™ — a;,g"

Tk =

45



Convergence Rate  z+=z® — 4,9

» Premultiplying by@ and subtracting from both sides yields

0=g" - Qg™
which can be rewritten as

073
Hence,® is an eigenvector@f

» By the lemma, i§®) is not an eigenvectorpf |, theni
(recall thatyx cannot exceed 1)

46



Theorem 8.6

» Theorem 8.6: Lefz®} be a convergent sequence of iterates of
the steepest descent algorithm applied to a funétion . Then, the
order of convergence ¢x£*)}  is 1 in the worst case; that is,
there exist a functioh and an initial conditgh such that the
order of convergence ¢£¥)}  is equal to 1.

» Proof: Letf: R — R be a quadratic function with Hesglan
Assume that the maximum and minimum eigenvalueg of
satisfy\,...(Q) > \..n(Q) . To show that the order of convergence
IS 1, it suffices to show that there exist$ such that

et — || > cfla® — 2]

for somee .

47



Theorem 8.6
» By Rayleigh’s inequality

)\max (Q)
2

V( (k+1)> %( (k+1) _ )TQ( (k+1) 33*) < (k+1)

Similarly, V(@h) > /\mzﬁ;(Q)
Combining the inequalities above with Lemma 8.1, we obtain

>\mm %
|2 — 2| > \/(1 — k) 9 ) — |

|l — |

|2 — 2|

Amam(Q)

Therefore, it suffices to chooss” such thatd for some
d<1

48



Theorem 8.6

» Recall that for the steepest descent algorithm, assuming that

g'®) £ 0 for all &, (g(k)Tg(k)>2
T ghTQg) (ghTQ Tg™)
» First consider the case where 2 . Supposerthat «* IS

chosen such that® —2*  is not an eigenvectgr of . Then,
g = QzV — z¥) + 0 is also not an eigenvector Qf

» By Proposition 8.1,g%) = (2 +1) — g®)) /q, IS not an
eigenvector oQ forany [because any two eigenvectors
corresponding to,,..(Q) ang,.(Q) are mutually orthogonal].

» Also, ¢® lies in one of two mutually orthogonal directions.
Therefore, by Lemma 8.3, for each , the valug of of two
numbers, both of which are strictly less than 1. This proves the

n =2 CaSe.
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Theorem 8.6

4

For the general case,lg@t and  be mutually orthogonal
eigenvectors correspondingXg..(Q) andQ) . Chdibse
such thatz® — £ 40 liesin the spar,0of @nd  butis not
equal to either.

Note thatg® = Q(z!¥ —x*) also lies in the span of vand
but is not equal to either.

By manipulatingz (1) — 2 _ 4, 4*  as before, we can write
g+l = (I — 0;.Q)g™. Any eigenvector of) is also an
eigenvector off — o,.Q . Thereforgh) lies in the span of
and v, for all ; thatis, the sequefhg®} is confined within
the two-dimensional subspace spanned,by vand .We can
now proceed as inthe=2  case.
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